

ZeroGuard Recon Public API

ZeroGuard Recon [https://zeroguard.com/platform/recon-threat-intelligence]
is a threat intelligence platform that facilitiates data discovery, analysis
and attribution using serveral sources such as DNS, certificate transparency
logs, WHOIS, IP reputation and much more.

This is the main page of ZeroGuard Recon public API documentation which is
aimed at providing a detailed and structured reference for all API users. Below
is a table of contents that should help you to get started in no time.

Warning

The documentation is still very much work in progress. Please do not
attempt to implement any API clients until this warning disappears. Current
API structure is by no means set in stone and may change without a further
notice.

Note

If you are interested in this project do not hesitate to get in touch by
sending an email to info@zeroguard.com or filling
out a form [https://zeroguard.com/platform/recon-threat-intelligence] on
our website (scroll to the bottom of a page).

Introduction

	Features Overview

	Versioning

General Concepts

	Authentication

	Data Types

	Errors

	Rate Limits

	Object References

	Response Object Structure

Endpoints

	Search Subdomains

About

	Bugs Reporting

	Changelog

	Roadmap

	To Do

Features Overview

Todo

Fill out a features overview page (this one)

Versioning

ZeroGuard Recon is an actively evolving platform that thrives to deliver as
many useful features to our customers as it is physically possible to implement
in a give time frame. As such we cannot commit to maintaining backwards
compatibility for as long as there are any major features we would like to add
to our platform.

That’s being said, the burden of maintaining all API clients and making sure
they are fully functional and are compatible with the latest features are
completely on our shoulders.

A public roadmap of features that are planned for a release will be
available in the near future.

Warning

As it is mentioned above, this API is in an early access and may change
without further notice at any given moment of time. We apologise for any
caused inconvenience and hope for your understanding.

Authentication

Todo

Fill out an authentication documentation page

Data Types

Data types represent all different entities that can be referenced (see
Object References for details) in the API response object. Each data
type defines a unique value for a type field as well as any other
type-specific fields.

IPv4 Address

	
IPv4 Address

	IPv4 address.

	Object Properties

	
	type (string [https://docs.python.org/library/stdtypes.html#str]) – Type definition. Always present and has a
value of ipv4.

	address (string [https://docs.python.org/library/stdtypes.html#str]) – IPv4 address. Always present.

	closest_prefix (Prefix Reference) – A reference to the smallest network prefix
which contains this IP address. Always
present.

	prefixes (list of Prefix Reference) – A list of references to multiple
network prefixes which together represent a
full prefix chain for this IP (from the
smallest to 0.0.0.0/0). Always present.

	reputation (list of IP Reputation Entry) – List of IP reputation entries containing
information from reputation feeds in which
this IP address was observed throughout its
lifespan. Always present.

	
Prefix Reference

	A reference to Network Prefix
which contains an IP address.

	Object Properties

	
	_ref (int [https://docs.python.org/library/stdtypes.html#int]) – Reference number. Always present.

	
IP Reputation Entry

	IP reputation feed entry. Instances of this type are always located in
reputation list of IPv4 Address or
IPv6 Address objects as they are generated dynamically for a
specific IP returned in the API response.

	Object Properties

	
	name (string [https://docs.python.org/library/stdtypes.html#str]) – Name of IP reputation feed to which this entry
belongs to. Always pressent.

	current (bool [https://docs.python.org/library/stdtypes.html#boolean-values]) – Flag which determines whether this reputation feed
entry is current (exists in a source reputation
feed when the response is returned). Always
present.

	first_seen (int [https://docs.python.org/library/stdtypes.html#int]) – Unix timestamp of when this entry was first
observed. Always present.

	last_seen (int [https://docs.python.org/library/stdtypes.html#int]) – Unix timestamp of when this entry was last
observed. Always present.

Todo

Replace IPv4 address data type example with an actual output from the API.
Currently it is a stub.

Example of IPv4 Address data type instance (truncated for
clarity):

{
 "type": "ipv4",
 "address": "8.8.8.8",
 "closest_prefix": {"_ref": 1},
 "prefixes": [
 {"_ref": 1},
 {"_ref": 3},
 {"_ref": 4}
],
 "reputation": [
 {
 "name": "firehol-coinbl-hosts",
 "current": false,
 "first_seen": 1584712048,
 "last_seen": 1584720037

 },
 {
 "name": "firehol-dshield-top-1000",
 "current": true,
 "first_seen": 1584714021,
 "last_seen": 1584720037
 }
]
}

IPv6 Address

IPv6 address. Structure is near identical to IPv4 Address thus a
lot of nested object definitions are re-used.

	
IPv6 Address

	IPv6 address.

	Object Properties

	
	type (string [https://docs.python.org/library/stdtypes.html#str]) – Type definition. Always present and has a
value of ipv6.

	address (string [https://docs.python.org/library/stdtypes.html#str]) – IPv6 address. Always present.

	closest_prefix (Prefix Reference) – A reference to the smallest network prefix
which contains this IP address. Always
present.

	prefixes (list of Prefix Reference) – A list of references to multiple
network prefixes which together represent a
full prefix chain for this IP (from the
smallest to 0.0.0.0/0). Always present.

	reputation (list of IP Reputation Entry) – List of IP reputation entries containing
information from reputation feeds in which
this IP address was observed throughout its
lifespan. Always present.

Todo

Replace IPv6 address data type example with an actual output from the API.
Currently it is a stub.

Example (truncated for clarity):

{
 "type": "ipv6",
 "address": "2001:4860:4860::8888",
 "closest_prefix": {"_ref": 3},
 "prefixes": [
 {"_ref": 3},
 {"_ref": 4},
 {"_ref": 12}
],
 "reputation": [
 {
 "name": "firehol-coinbl-hosts",
 "current": false,
 "first_seen": 1584712048,
 "last_seen": 1584720037

 },
 {
 "name": "firehol-dshield-top-1000",
 "current": true,
 "first_seen": 1584714021,
 "last_seen": 1584720037
 }
]
}

Network Prefix

Todo

Replace Network Prefix data type stub with an actual definition

	
Network Prefix

	Network prefix.

	Object Properties

	
	type (string [https://docs.python.org/library/stdtypes.html#str]) – Type definition. Always present and has a value of
netpref.

	prefix (string [https://docs.python.org/library/stdtypes.html#str]) – Actual value of a network prefix.

Example:

{
 "type": "netpref",
 "prefix": "0.0.0.0/0"
}

Subdomain

	
Subdomain

	Internet subdomain.

	Object Properties

	
	type (string [https://docs.python.org/library/stdtypes.html#str]) – Type definition. Always present and has a value of
subdomain.

	name (string [https://docs.python.org/library/stdtypes.html#str]) – Name of a subdomain. Always present.

Example:

{
 "type": "subdomain",
 "name": "foo.example.com"
}

Errors

All error responses sent by the API have a unified structure. Each error
response contains two contextual keys: query and
error.error_context. The former just mirrors specified request
parameters while the latter contains contextual error data that is specific
for an endpoint to which the request was sent.

See Error Types for a list of all defined errors.

Structure

	
Error Response

	General structure of an error response.

	Object Properties

	
	query (object) – Contextual information about the query that was
performed. Essentially, this object just mirrors
request parameters that were specified (after
a disambiguation and resolution process). Object
structure is defined individually for each API
endpoint. See Query Object for a
half-decent generalization of this object’s
structure. May be absent.

	error (Error Object) – Error object that was returned. Always present.

	
Error Object

	Error object structure.

	Object Properties

	
	error_name (string [https://docs.python.org/library/stdtypes.html#str]) – Name of an error that occured. Always
present.

	error_desc (string [https://docs.python.org/library/stdtypes.html#str]) – Description of an error that occured. It is
static and is defined by the error itself,
not a request that was sent. Always
present.

	error_context (object) – A nested object with a contextual
information about the error. Object
structure is defined individually for each
API endpoint. May be absent.

Examples

An example of a full-fledged error response:

{
 "query": {
 "action": "search_subdomains",
 "parameters": {
 "domain": "example.com",
 "iv.history": true
 }
 },
 "error": {
 "error_name": "bad_request",
 "error_description": "Request is malformed",
 "error_context": {
 "invalid_parameter_name": "iv.history",
 "valid_parameter_names": [
 "ipv4.history",
 "ipv4.latest",
 "ipv4.live",
 "ipv4.meta",
 "ipv4.oldest",
 "ipv6.history",
 "ipv6.latest",
 "ipv6.live",
 "ipv6.meta",
 "ipv6.oldest"
]
 }
 }
}

Error Types

The majority of error types are tied to a specific HTTP status code though
this is not always the case (i.e. both Empty Result and
No Such Endpoint are returned with 404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5]). It is
advised to always check the response body to determine which type of error has
occured.

While the majority of API errors are documented here, there is a chance that
client will receive an undocumented error. These can be treated according to
HTTP response status they are returned with completely ignoring the response
body.

Bad Request

Request object structure is malformed. This error usually contains more
information about what is exactly malformed in error.error_context object.
Context object structure usually differs depending on an endpoint.

	HTTP Status Code

	Error Name

	Error Description

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1]

	bad_request

	Request object structure is malformed

Example:

{
 "query": {
 "action": "search_subdomains",
 "parameters": {
 "domain": "69"
 }
 },
 "error": {
 "error_name": "bad_request",
 "error_description": "Request is malformed",
 "error_context": {
 "invalid_parameter_value": "69"
 }
 }
}

Empty Result

Request was successfully processed but yielded no results. This error is often
sent in conjunction with 404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] HTTP status code thus making it
similar to No Such Endpoint. Do check the response body to
correctly handle these errors.

	HTTP Status Code

	Error Name

	Error Description

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5]

	empty_result

	Request produced no results

Example:

{
 "query": {
 "action": "search_subdomains",
 "parameters": {
 "domain": "abcabcabcabcabcabcabcabcabcabcabcabcabc.io",
 "ipv4.history": false,
 "ipv4.latest": true,
 "ipv4.live": false,
 "ipv4.meta": false,
 "ipv4.oldest": true,
 "ipv6.history": false,
 "ipv6.latest": true,
 "ipv6.live": false,
 "ipv6.meta": false,
 "ipv6.oldest": true
 }
 },
 "error": {
 "error_name": "empty_result",
 "error_description": "Request produced no results"
 }
}

Internal Server Error

Internal server error. This is most probably a bug. See Bugs Reporting
for more information about how to report bugs and security vulnerabilities.

	HTTP Status Code

	Error Name

	Error Description

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1]

	internal_server_error

	API server failed to process the request

Example:

{
 "error": {
 "error_name": "internal_server_error",
 "error_description": "API server failed to process the request"
 }
}

Method Not Allowed

Requested endpoint does not support HTTP method that was used. Query Object is not returned when this error
occurs.

	HTTP Status Code

	Error Name

	Error Description

	405 Method Not Allowed [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6]

	method_not_allowed

	Request method is not supported by this endpoint

Example:

{
 "error": {
 "error_name": "method_not_allowed",
 "error_description": "Request method is not supported by this endpoint"
 }
}

No Such Endpoint

Requested API endpoint does not exist. Query Object is not returned when this error
occurs.

	HTTP Status Code

	Error Name

	Error Description

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5]

	no_such_endpoint

	Requested API endpoint does not exist

Example:

{
 "error": {
 "error_name": "no_such_endpoint",
 "error_description": "Requested API endpoint does not exist"
 }
}

Rate Limit Exceeded

	HTTP Status Code

	Error Name

	Error Description

	429 Too Many Requests [http://tools.ietf.org/html/rfc6585#section-4]

	rate_limit_exceeded

	API rate limit was exceeded

Todo

Propertly document Rate Limit Exceeded error type

Processing Timeout

Note

This error indicates that a hard limit for resources utilization was reached
and no further processing will be made for this request. This is a current
limitation of the API. Processing timeout will be increasing in the near
future.

Request took too long to process and was abandoned by the API server. No
results will be returned.

	HTTP Status Code

	Error Name

	Error Description

	501 Not Implemented [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.2]

	processing_timeout

	Request processing took too long

{
 "query": {
 "action": "search_subdomains",
 "parameters": {
 "domain": "example.com",
 "ipv4.history": true,
 "ipv4.latest": true,
 "ipv4.live": true,
 "ipv4.meta": true,
 "ipv6.history": true,
 "ipv4.oldest": true,
 "ipv6.latest": true,
 "ipv6.live": true,
 "ipv6.meta": true,
 "ipv6.oldest": true
 }
 },
 "error": {
 "error_name": "processing_timeout",
 "error_description": "Request processing took too long"
 }
}

Rate Limits

Todo

Fill out rate limits documentation

Object References

Todo

Object references explanation sucks. Make it better.

Due to a highly nested and interconnected nature of the data provided by the
API, there is a need to avoid data duplication and deep nesting in a response
object structure. API utilizes object references to achieve that.

It is said that JSON object references another object if and only if it
contains _ref field.

The easiest way to understand how references work is to explain how they are
generated:

	Retrieve all matching data for a given request from a storage cluster

	Assign a unique natural number [https://en.wikipedia.org/wiki/Natural_number] as an ID for each data
object in the results

	Replace all references inside data objects with a newly generated reference
numbers that are specific only to this response object.

The result is a flat response object structure which allows each data object to
reference multiple other data objects without any data duplication.

Note

Reference objects never contain values that are specific to the request and
its parameters. Each referenced data object contains data that is
independent from the request thus the same data object may be encountered
across several responses with a different reference ID but with the same
data.

Example:

{
 "query": {
 "domain": "zeroguard.com"
 },
 "data": {
 "records": [
 {
 "_ref": 1,
 "ipv4": [
 {
 "_ref": 2,
 "latest": true,
 "oldest": false,
 "live": false,
 "seen_at": [
 1584660099,
 1584650121
]
 }
]
 }
],
 "references": {
 "1": {
 "type": "subdomain",
 "data": {
 "name": "www.zeroguard.com"
 }
 },
 "2": {
 "type": "ipv4",
 "data": {
 "address": "157.7.107.64",
 "reputation": []
 }
 }
 }
 }
}

Response Object Structure

All responses returned by ZeroGuard Recon API have a unified structure. This
page describes how non-error responses are structured. For a structure of error
responses refer to Errors section.

Structure

	
Non-Error Response

	General structure of a non-error API response.

	Object Properties

	
	_meta (object) – Contextual meta information about the response.
May be absent.

	query (Query Object) – Contextual information about the query that was
performed. Essentially, this object just mirrors
request parameters that were specified (after
a disambiguation and resolution process). Object
structure is defined individually for each API
endpoint. Always present.

	data (Data Object) – Results of a performed query (request). Always
present.

	
Query Object

	Structure of a query object.

	Object Properties

	
	action (string [https://docs.python.org/library/stdtypes.html#str]) –

Todo

Fill out response body query object structure

	
Data Object

	General structure of a non-error API response data.

	Object Properties

	
	records (list) – List of records returned by the back-end. Object
structure is defined individually for each API
response. Always present.

	references (map) – Mapping of _ref (reference number) to a
referenced object. See Object References for
details. Included only if records reference
any related objects. May be absent.

Todo

Describe a structure of _meta object

Examples

{
 "_meta": {},
 "query": {
 "domain": "example.com"
 },
 "data": {
 "records": [
],
 "references": {
 }
 }
}

A recommended way of getting data out of API response:

	Check HTTP status code of the response.

Todo

More decent examples (or at least one example that is full)

Search Subdomains

This endpoint allows to search for subdomains of a given domain. Search results
will not only include subdomains but also all related to them objects (i.e.
IP addresses [https://en.wikipedia.org/wiki/IP_address],
ASNs [https://en.wikipedia.org/wiki/Autonomous_system_(Internet)],
RIRs [https://en.wikipedia.org/wiki/Regional_Internet_registry]).

Note

Please make sure you’re familiar with Data Types,
Errors, Response Object Structure and other
general concepts as all information from these sections is directly applicable
to this endpoint.

Schema

	
POST /v1/subdomains/(str: domain)

	Search for all seen subdomains and related objects for domain.

All JSON parameters are prefixed with <ip_version> which determines
a version of IP addresses on which a given JSON parameter acts on. This
can be one of the following: ipv4, ipv6, ip (both versions).
More specific version always prevails meaning that below parameters

{
 "ipv4.history": true,
 "ip.history": false
}

are resolved as

{
 "ipv4.history": true,
 "ipv6.history": false
}

	Parameters

	
	domain (str) – Domain which subdomains to return.

	JSON Parameters

	
	<ip_version>.history (bool) – Return a list of IP addresses to
which a found subdomain pointed in
the past. Default is false.

	<ip_version>.latest (bool) – Return the latest found IP address
for each found subdomain. Default is
true.

	<ip_version>.oldest (bool) – Return the oldest found IP address
for each found subdomain. Default is
false.

	<ip_version>.live (bool) – Perform a live DNS query and return
its results for each found subdomain.
Default is false.

	<ip_version>.meta (bool) – Return extra information about IP
addresses related to each found
subdomain. Default is true.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Subdomains search was successfull.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request. XXXXXXXFIXME See Errors for a general
structure of an error response and Response Data
for details on how error context is structured for this
endpoint.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Subdomains search was performed successfully but yielded
no results.

	429 Too Many Requests [http://tools.ietf.org/html/rfc6585#section-4] – API rate limit was exceeded. See
Rate Limits for more information on
how to gracefully handle API quota.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Internal server error. This is most probably a bug. See
Bugs Reporting for more information about how to
report bugs and security vulnerabilities.

Minimal Example:

Todo

Fully document a complex request example for /v1/subdomains endpoint

http

POST /v1/subdomains/google.com HTTP/1.1
Host: api.zeroguard.com
Accept: application/json

curl

curl -i -X POST https://api.zeroguard.com/v1/subdomains/google.com -H 'Accept: application/json'

wget

wget -S -O- https://api.zeroguard.com/v1/subdomains/google.com --header='Accept: application/json'

python-requests

requests.post('https://api.zeroguard.com/v1/subdomains/google.com', headers={'Accept': 'application/json'})

response

HTTP/1.1 200 OK
Content-Type: application/json

{"stab": "StuB"}

Complex Example:

Todo

Fully document a complex request example for /v1/subdomains endpoint

http

POST /v1/subdomains/complex?fields=foo%2Cbar%2Cbaz HTTP/1.1
Host: api.zeroguard.com
Accept: application/json

curl

curl -i -X POST 'https://api.zeroguard.com/v1/subdomains/complex?fields=foo%2Cbar%2Cbaz' -H 'Accept: application/json'

wget

wget -S -O- 'https://api.zeroguard.com/v1/subdomains/complex?fields=foo%2Cbar%2Cbaz' --header='Accept: application/json'

python-requests

requests.post('https://api.zeroguard.com/v1/subdomains/complex?fields=foo%2Cbar%2Cbaz', headers={'Accept': 'application/json'})

Response Data

Todo

Fully document a response data object structure for /v1/subdomains
endpoint

Error Context

Todo

Document error context for /v1/subdomains endpoint

Bugs Reporting

Please report any issues with this documentation or with a public API in
general to bugs@zeroguard.com. For responsible
disclosure see Security Policy section.

Security Policy

Todo

Fill out security policy file

This document is under construction

Changelog

Note

Please note that this changelog includes both changes to the public API and
changes to a documentation. Not every version of documentation indicates
changes in the public API.

Version 0.0.1-dev1

Unreleased

	Work in progress version of documentation for APIv1.

Roadmap

To be published.

Todo

Fill out a roadmap page

To Do

This is a list of TODOs that cover all missing bits and pieces that are to be
filled out in the future.

Todo

Fill out security policy file

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/about/bugs.rst, line 14.)

Todo

Fill out a roadmap page

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/about/roadmap.rst, line 6.)

Todo

Fill out an authentication documentation page

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/authentication.rst, line 5.)

Todo

Replace IPv4 address data type example with an actual output from the API.
Currently it is a stub.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/data-types.rst, line 69.)

Todo

Replace IPv6 address data type example with an actual output from the API.
Currently it is a stub.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/data-types.rst, line 141.)

Todo

Replace Network Prefix data type stub with an actual definition

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/data-types.rst, line 182.)

Todo

Propertly document Rate Limit Exceeded error type

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/errors.rst, line 301.)

Todo

Fill out rate limits documentation

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/rate-limits.rst, line 5.)

Todo

Object references explanation sucks. Make it better.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/references.rst, line 5.)

Todo

Fill out response body query object structure

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/response-structure.rst, line 38.)

Todo

Describe a structure of _meta object

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/response-structure.rst, line 56.)

Todo

More decent examples (or at least one example that is full)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/concepts/response-structure.rst, line 84.)

Todo

Fully document a complex request example for /v1/subdomains endpoint

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/endpoints/subdomains.rst, line 80.)

Todo

Fully document a complex request example for /v1/subdomains endpoint

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/endpoints/subdomains.rst, line 98.)

Todo

Fully document a response data object structure for /v1/subdomains
endpoint

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/endpoints/subdomains.rst, line 114.)

Todo

Document error context for /v1/subdomains endpoint

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/endpoints/subdomains.rst, line 123.)

Todo

Fill out a features overview page (this one)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/zeroguard-api-docs/checkouts/latest/docs/introduction/features.rst, line 5.)

 HTTP Routing Table

 /v1

 		 	

 		
 /v1	

 	
 	
 POST /v1/subdomains/(str:domain)	

Index

 J

J

 	
 	
 JSON Objects

 	Data Object

 	Error Object

 	Error Response

 	IP Reputation Entry

 	Non-Error Response

 	Prefix Reference

 	Query Object

 Page not found

Thanks for trying.

Note

Please make sure you’re familiar with Data Types,
Errors, Response Object Structure and other
general concepts as all information from these sections is directly applicable
to this endpoint.

 _static/favicon.png

_static/file.png

_static/down.png

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 ZeroGuard Recon Public API

 		
 Features Overview

 		
 Versioning

 		
 Authentication

 		
 Data Types

 		
 IPv4 Address

 		
 IPv6 Address

 		
 Network Prefix

 		
 Subdomain

 		
 Errors

 		
 Structure

 		
 Examples

 		
 Error Types

 		
 Bad Request

 		
 Empty Result

 		
 Internal Server Error

 		
 Method Not Allowed

 		
 No Such Endpoint

 		
 Rate Limit Exceeded

 		
 Processing Timeout

 		
 Rate Limits

 		
 Object References

 		
 Response Object Structure

 		
 Structure

 		
 Examples

 		
 Search Subdomains

 		
 Schema

 		
 Response Data

 		
 Error Context

 		
 Bugs Reporting

 		
 Security Policy

 		
 Changelog

 		
 Version 0.0.1-dev1

 		
 Roadmap

 		
 To Do

_static/ajax-loader.gif

